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.4 Abstract

We consider the solution of the single comodity strictly convex

network flow problem in a distributed asynchronous computation environment.

The dual of this problem is unconstrained, differentiable, and well suited

for solution via Gauss-Seidel relaxation. We show that the structure of

the dual allows the successful app' *cation of a distributed asynchronous

method whereby relaxation iterations are carried out in parallel by several

processors in arbitrary order and with arbitrarily large interprocessor com-

mication delays.
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1. Introduction

Consider a directed- graph with set of nodes N and set of arcs A. Each

arc (i,j) has associated with it a cost function Sij" -m,.]. We denote

by f the flow of the arc (i,j) and consider the problem of minimizing

total cost subject to a conservation of flow constraint at each node

minimize ij (f) (1)

subject to- fi 0. , VieN.
(&ieA (isj)eA

*We make the following standing assumptions on gj

a) g1  is strictly convex, lower semicontinuous, and subdifferentiable

at each point within its effective domain, i.e. has at least one sub-

gradient at every f with a flj)<-

b) The conjugate convex function of gij, defined by

g*J (tj sup (tJ fi gij (f iJ))" (2)
a sup (2

is real valued, i.e. -< < gCtij) < w for all real t (Because of the
strict convexity assumed in a) above, gS? is also continuously differentiable

and its gradient denoted Vg? (tij) is the unique fi. attaining the supremwu

in (2)--see [7], pp.* 218,253).

It is easily seen from (2) that Assumption b) implies that

li 8i(f) . Therefore the objective function of the primal

problem (1) has bounded level sets ([ 7], Section 8). It follows that

there exists an optimal solution for problem (1) which must be unique

in view of the strict convexity assumed in a).

The problem above is of great practical interest and has been studied

for a long-time. Except for strict convexity our assumptions are not overly
'4- restrictive. For example they are satisfied in the following two cases:



1) The constrained case where $tj is of the form

* ~iff.t.
sCf-.l j"C3)Sig fijf (ij) otherwise

where I and cij are given lower and upper bounds on the arc flow, and "ij

is a strictly convex, real valued function defined on the real line R.

2) The unconstrained case where g'. is strictly convex, real valued and

its right and left derivatives gj and Sj satisfy

- i g + f lir g • -( (4)

A dual problem for (1) is given by

minimize q(Cp)

subject to no constraints on the vector p - (piicNl, (S)

where q is the dual functional given by

q q(p) - I &*j (Pi'Pj). (6)

(itj)cA i

We refer to p as a trice vector and its components pi as prices. The ith

price is really a Lagrange multiplier associated with the ith conservation

of flow constraint. The duality between problems (1) and (S) is well known

and is explored in great detail in the recent book by Rockafellar [1]. The

earlier book by Rockafellar (7] gives the necessary and sufficient condition

for optimality of a pair (f,p). A feasible flow vector f a (Jfij(i,j)cA} is

optimal for (1) and a price vector p = (PiiN is optimal for CS) if and
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only if for all arcs (i,j) ([7], pp. 337-338)

p- is a subgradient of Si at fj

An equivalent condition is

f 7?(ip) V (i.J)CA. (7)

Any one of these equivalent relations is referred togas the comlementary

slackness condition, and is shown in Figure 1.

WO
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Since the dual problem is unconstrained and differentiable it is

natural to consider algorithmic solution by a descent iterative method.

The Gauss-Seidel relaxation method is particularly interesting in this respect

since it admits a simple implementation. Given a price vector pa node i is
A

selected and its price pi is changed (relaxed) to a value pi such that

VgZL Cpa-PL) W g (p -pj). (8)• ."- i)EA (im"C )  g

It is easily seen (compare with the definition (6) of the dual cost q) that

this equation is equivalent to O - 0, so the dual cost is minimized at pi

with respect to the ith'price, all other prices being kept constant. The

algorithm proceeds by relaxing the prices of all nodes in cyclic order and

-. repeating the process. The convergence of this algorithm does not follow

i=mediately from standard results on relaxation methods (2], [3], [4] since

these results require some assumption that is akin to strict convexity of

the dual objective function (for a counterexasple see Powell [S]). Un-

fortunately the dual objective function (6) need not be strictly convex and

the only result we know of regarding convergence of a network algorithm based

on relaxation is due to Cottle and Pang [6]. It applies to transportation

problems with quadratic cost function, and involves certain restrictions in

the way relaxation is carried out.

Our main objective in this paper is to explore the convergence

properties of distributed versions of the relaxation method just described.

Here we assume that each price pi is under the control of a separate

processor who changes pi to p1 on the basis of (8) and coumauicates the

new value to the other processors. One can consider a parallel computation

procedure carried out in an orderly manner whereby all processors exchange
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their current prices before carrying out their relaxation iteration.

Mathematically this would be equivalent to a Jacobi type of relaxation

procedure. We would like to consider, however, a much more general procedure

whereby the comuication between processors is not regular, and the information

available at some processors regarding prices of other processors may be

.arbitrarily out-of-date. In addition we allow some processors to iterate

more frequently than others. Models of such asynchronous algorithms have

been formulated some time ago and by now there is considerable understanding'

of their convergence properties (see [8]-[161; [17] is a survey). It turns

out that the dual problem (S) has structure that allows us to show that

the asynchronous relaxation method has satisfactory convergence properties.

This is particularly true when the dual problem (S) has a unique optimal

solution. Otherwise satisfactory convergence depends on the starting point.

These results are all new and are shown in Section 3. The next section

analyzes the structure of the dual solution set and provides some preliminary

analysis.

Our notational conventions are that a subscript denotes a node or pro-

cessor index, and a superscript denotes a time or iteration index. All vector

- inequalities should be interpreted in a coordinatewise sense. In order to

simplify notation we have implicitly assumed that there is at most one arc

associated with any ordered pair of nodes i and j, so that the arc notation

(ij) has unambiguous meaning. However this assUMptipn is not essential

to any of our results.

OVreuls

IV' o
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2.Structure of the Optimal Dual Solution Set

Our standing assumptions a)-c) guarantee that the primal problem C1)

has a unique optimal solution. They also guarantee that the dual problem

(S) has at least one optimal solution. (Assumption a) guarantees that every

feasible solution of the primal problem is regularly feasible (1] and the

existence theorem of [1], p. 360 applies). On the other hand the optimal

solution of the dual problem (S) is never unique since adding the same con-

stant to all coordinates of a price vector p leaves the dual cost unaffected.

We can remove this degree of freedom by constraining the price of one node,

- say node N, to be zero. Thus we consider the reduced dual optimal solution

set P* defined by

p = {p*] q(p*) m in q(p), p O (9)

A. where q is the dual objective function

q(p) a I (Et Cpi-pi) (10)

For the most part of the paper, we wil.1 operate under the following

assumption:

Assumption 1: The reduced dual optimal solution set P* is compact.

' Assution I is not overly restrictive. For example let ff!. I(i,j)CA}

be the unique primal optimal solution, and consider the set of arcs

A (i,J)lft *lies in the interior of the set t f )1

Then Assumption 1 is satisfied if the subgraph (N,A) is connected. To see

'_eN.*, this note that for all arcs (i,J)eA we have a bounded set of subgradients

,,.,,.,,"
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of gjj at fj thereby implying a bounded set of price differences pi-pj

corresponding to dual optimal solutions [cf. (6)]. Note that in the un-

constrained case mentioned in the previous section every arc belongs to A

so, if the original graph is connected, Assumption 1 is satisfied. The con-

strained case of the previous section can be converted to the unconstrained

case by replacing constraints by nondifferentiable penalty functions (see

[18], Section 5.5). For example a constraint fj > 0 can be eliminated by

2adding to the cost g a penalty c max(,-f ij + [max(0 ,°fij} 2 with c

positive and sufficiently large.

Consider now the set

.. P - P[Pa a O (12)

and for i ,...,N-l, the point-to-set mapping R. which assigns to a price

vector peP the set of all prices pi that minimize the dual cost along the

ith price starting from p, i.e. (cf. (8))

R(p) ( I - Vg? (i-PJ)1} (13)
* 1i

It is well known that a real valued convex function having one compact level

0 set, has all its level sets compact ([7], p. 70). Therefore under Assumption

1 the sets R.(p), peP are all nonempty, compact intervals. It follows that

under Assumption 1 the (point-to-point) mappings

.i (P)  max Pi (14)• ". -
p i c R i ( P )

pieR
i (p)

I. % 

s
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are well defined on the set P. We call Ri CR) the ith maximal (minimal)

relaxation mapping. It gives the maximal (minimal) minimizing point of the

dual cost along the ith coordinate starting from its argument. The point-to-

set mapping Ri is called the ith relaxation mapping.

Some key facts are given in the following proposition.

Proposition 1: Let Assumption 1 hold. The mappings Ri and R. are

continuous on P. They are also monotone on P in the sense that for any

p, p'.P, i " 1,...,N we have

ficp) 1i(p') if p _ p', (16)

,(p) 9P') if p <p'. (17)

Proof: To show continuity of w. we argue by contradiction. Suppose:o"- 1 -

.5 kthere exists a convergent price vector sequence p -* p such that the cor-

responding sequence (R i(pk)) does not converge to Ri(p). By passing to a

subsequence if necessary suppose that for some a > 0 we have

* iC(P) > R( pk ) 6 Vk (18)

Cthe proof is very similar if 6 < 0 and the inequality is reversed). By

the definition of i we have

7gmi(Pm-pfi(p)) 7 M)-p (19)

k- k "i{Pk)) 7 g i*j(f(pk)'Pk), V k. (20)

m.:.

C.
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Since pk p it follows using (18) that for sufficiently large k we have

pk-R--Cpk) P p.--Ri(P) V (m,i)eA
Im -- k

k < Ri(p)-p. 0 V (i,j)eA.

. Therefore for sufficiently large k we have using the convexity of i

.,;i(m-Ri~p) > gC(pm-RiCp)) , V (mi)eA,

lCRi pk )°Pp) li I V (i,j)eA.

Using these relations together with (19), (201 we obtain for all sufficiently

large k

A k - k
f3u gm(p !L(p)) o llgip-R 1Cp )DI V (iui)EA (21)

k k
f 7ig g((P)-Pj) Vgj(Ri(p )-pj). V (i,j)eA. (22)

Consider the intervals Imi and Iij given by

I m i(ti Vqi(t) f= j , V (m,i)eA

II ft i(t) - f} M V (i,j)eA.,,- zljI~gij ij,

For k sufficiently large so that (21), (22) hold we have

Wi(p) " max(pii i  pm-Imi (m,i) eA, Piclij-pj, (i,j)A}

k
' i (ij)cA}

(pfipep-m,(miep1-ii-

J-4~*p;.* ~ **~~~*-. , -



Since pk - p, it is evident from these relations that i(pk) * . (Cp) thereby

contradicting (18).

To show monotonicity of 1i we again argue by contradiction. Suppose

there exist p and p' such that p! > pj, V j-l, ...,N-1 but

(i(p) > RiCp'). It follows then that

pm-ip)>-fC.) V (m, ihAp1;1-;cp') - ml-i

. p,- <-p V (i,j)eA.

- Therefore

-. 1.... 9 CP -ip ) > g (pm-Ri (P) , ¥ (n,i)eA (23)

Vg? (R (p)-p - VS&(Ri(p)-pj) ,  V (ij)eA C24)

Since by definition we have

* ~ rg*(pW.~.(t)) l1* (11t..n'-p! (2S)

• Vg .(pmiRi(P)) " (26)

it follows that equality holds in (23), (24), i.e.

7Q. - p-IiP))" ViCp3-RiCP))

m-.. f j Vg(jCRi(P')-P!) V j(Ri(P)°Pj)

,-.

*14 1~
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Consider the intervals

:t% f

1j - t 7 2st(t) -

and lot

,,.:, a ( P) ( P')

We have for all (mi)cA

p- RiCp')c Imi pa -1i~p)e Im

and since p. < p., we obtain

Pm- (p) I P- r -mp-' - Ri(p')-

Therefore

pal - i(P'3 " e i" V (,m,i)eA

and similarly

Rif(p') + 5-pj C 'ij' V (ij)cA.

It follows that

S[(p, ) * Ri(P')

thereby contradicting the maximal nature of Ri [cf. (14)].

The proof of continuity and monotonicity of i is analogous with the
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one just given for and is omitted. Q.E.D.

The monotonicity and continuity of the mappings it and R. imply

a thus far unreported and somewhat surprising property of the optimal

dual solution set.
-.

Proposition 2: Let Assumption 1 hold. There exist a maximal and a minimal

optimal solution of the dual problem, i.e. there exist peP* and pieP* such

that

P. I p 1 , pep*. (27)

-V Proof: Since P* is nonempty and compact it contains a noninferior element

p for which there is no vector peP* such that p i and pi a p for all

i. From the definition of and the optimality of F we have p < .(') for

all i. Furthermore for all i the vector p,...pi 1,' R (F) Pi.l'

belongs to P* so from noninferiority of p it follows that Rt (p) < pi.

Therefore we have Fi - Wi(p) for all i. Let now p be a price vector

obtained from p according to

P." P

--*.. .I

pi a

01 N

where 8 >0 is sufficiently large so that

p>p , V PeP*. (28)
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It is easily Seen that we have I iCp) <s i for all i so, using the

monotonicity of shown in Proposition 1, we obtain

P R (p) R k (p) , Vk (29)

where : RN'Il -1 0-1 is the mapping

RCp) ( 30)(p),...,R 1(P) (30)

and R is the composition of I with itself k times. From (29) we see that

the sequence 0Cp) converges to some p and by continuity of I we must have

p - E(p) as well as p ~ .Since p - Rfp) implies that pCP* it follows

from the choice of j that p i B. Also from (28), (29) and the fact

p I f(p) for all pcP* we obtain p a p p for all peP* which shows that

is a naximal element of P*. The proof for existence of a minimal

element p is entirely similar. Q.E.D.

---V

7r

U4 '-eX.4
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.. 3. Convergence Analysis of Asynchronous Relaxation

The model of distributed asynchronous computation we adopt is described

in (11], (12]. With each node i a 1,... N-1 we associate a processor that

computes from time to time some element of Ri(p) (here p is the latest

price vector available to processor i), and sets the price pi to this

" element. This price is then communicated at some later time to all other

processors. Computation and Comuication at the various

processors need not be synchronized. The precise model is as follows:

At each time instant, node i can be in one of three possible states

V compute, transmit, or idle. In the compute state node i computes a new
- price p,. In the trnsait state node i coiminicates the price pi obtained

from its own latest computation to one or more nodes m(mi). In the idle

V. state node i does nothing related to the solution of the problem.

We assume that computation and transmission for each node takes place

in time intervals (tI.,t 2J with t1 < t2, but do not exclude the

possibility that a node may be simultaneously transmitting to more than one

node nor do we assume that the transmission intervals to these nodes have

the same origin and/or termination. We also make no assumptions on the

length, timing and sequencing of computation and transmission intervals

other than the following:

AssuMPtion 2: For every node i and time t > 0 there exists a time t' > t

such that [t,t'J contains at least one computation interval for i and

at least one transmission interval from i to each node m such that (m,i)CA

or (i,m)cA.

Assumption 2 is very natural. It states in essence that no node

KO "drops out of the algorithm" permanently--perhaps due to a hardware failure.

Without this assumption there is hardly anything we can hope to prove.
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Each node i has a buffer Bim for each m~i where it stores the

latest transmission from m, as well as a buffer 3 where it stores its

own price estimate p1. The contents for each buffer Bin at time t are

denoted p 3 (i). Thus ptCi) is, for every t, i and m an estimate of the

price Pm available at node i at time t. It is important to realize in

what follows that the buffer contents p (i), and p_(i') at two different

nodes i and i' need not coincide at all times. If iOm and iPO m the

buffer contents p%(i), and p (i') need not coincide at any time t. The
"V -m

vector of all buffer contents of node i is denoted p (i), i.e.,

t
The rules according to which the buffer contents p(i) are updated are

as follows:

(1) If [tl,t 2 ] is a transmission interval from node a to node i, the

contents of the buffer B. at time t, are transmitted and entered in the

buffer B i at time t 2 , i.e.

St2  t
P. Ci) - P. Cm). (31)

(2) If [tl,t 2] is a computation interval for node i, the content of
t

the buffer Bi is replaced at time t2 with an element of Ri(p (j)), i.e.i'i.2

t 2 ti
pi (i) e Ri~p  

( 1)) (32)

C (3) The contents of a buffer Bii can change only at the end of a

computation interval for node i. The contents of a buffer Sim, i can

change only at the end of a transmission interval from a to i.

7:.
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The algorithm based on (32) will be called Asynchronous Relaxation

Method (AR11.

Our objective is to derive conditions under which limit points of

the sequences ip (i)} are optimal solutions of the dual problem (). The

following proposition is our main result. The proof is based on a gen-

eral convergence theorem given in (12] (see also [17]) and applicable to

asynchronous iterative algorithms such as the one just described. The key

property that makes asynchronous convergence possible is the monotonicity

of the mappings TI and*&. shown in Proposition 1. This property is also

present in dynamic programing models and has been similarly exploited

to show the validity of asynchronous versions of the successive approximation

method [11).

Proposition 3: Let Assumptions 1 and 2 hold. For any initial buffer

contents p°(i)C P, i - 1,...,N-1, each limit point of the sequences

(pt(i)} generated by the ARIM belongs to the set

F ( {P>. 1p :1 5 (33)

where p and p are the maximal and minimal dual. optimal solutions. In

particular, if the reduced dual optimal solution set P* consists of a

unique vector p* we have

lia pt(i) p* , i * ,...,N-1. (34)

Proof: Let e, c P be price vectors such that

_p°(i) _ , V i 1, ,
and such that



li R kp p 
--k -

.1,. - IS

k , -ck -n. , p- -'

liR.) * liz R p) .
k-e, -k-.

(The existence of such vectors was established in the proof of Proposition

' .2). Consider the sets

"" p i P) - p i k Cp) , k- 1,2,... C3)

Note that the sequence {P} is nested and that the common intersection of

the sequence is the set P of (33).

We will apply now a convergence theorem given in Section 3 of [12]

;. CarProp. 3.1 of [17]).. According to this theorem the desired result

will be proved if the following three conditions are satisfied. (Rather

than consulting the references just cited, the reader may wish to think

through the proof of this since it is rather simple).

a) If pePthen for every i the vector p' with coordinates

P"{Pj ifj i

Ri W) if j i

(cf. the equation (32) associated with computation at node i), also belongs

to pk.

b) If pePk and pCPk then, for every i and a, the vector p' with coordinates

Pi" if j m

-fj#

ai m
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(cf. equation (31) associated with transmission from node m to node i),

-kalso belongs to P

C) If p(l),...p(N-l) belong to P then the vector p' with coordinates

P" .

': -Rj(pCJ)) , j - ,,,-

(cf. a computation (32) at each node followed by a transmission to every

other node), belongs to

It is easily seen that all the conditions stated above are satisfied

in our case so the desired conclusion follows. Q.E.D.

Prop-sition 3 shows that the ARM has satisfactory convergence when

'U P' has a unique element. One way to guarantee this is to consider the

optimal solution f* of the primal problem (1) and the set of arcs

A = ((i,j)eA J S is differentiable at f' 1.ii ii

Then, if the graph (N,A) is connected, P* consists of a unique point in

view of the complementary slackness condition (7). In order to improve

the convergence properties when P* has more than one point it is necessary

to modify the ARM so that a computation at node i replaces pi with Ri(p)

(not just any element of Ri(p)). We call this the maximal ARM. If in

place of !,(p) we use a(p) the resulting method is called the minimal ARM.

Proposition 4: Let Assumptions 1 and 2 hold. Assume that the starting

buffer contents satisfy

I'
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p 0 (i) F , V I 1 ,...,N-1 (36)

Then if rpt(i)} is generated by the maximal AM we have

liz tCi) ( 3 , i- l,...,,-l. (37)
.5M

AProof: The proof is identical to the one of Proposition 3 except that thei -k
set P of (35) should be replaced by

k {P " <p <.t;i)}, Q.E.D.

There is a similar result for the minimal ARM whereby F is replaced

by p and condition (36) is replaced by po(i) < p for all i. The follow-

ing example demonstrates that the results of Proposition 3 and 4 cannot

be improved.

Example: Consider the 3-node network shown in Figure 2.

Figure 2

The arc costs are

2(fl2)  a (f ' 1 2 (f 23)2  31 (f3 ) " If31 1 (f3l)2

and the optimal primal solution is

f1 f23 Uf31 a 0.
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* The reduced dual optimal solution set is derived from condition () and is

given by

P p p3  . 0, pl " P2, -1 1_ pI 5_ 1, -l 5_ P2 5- l}.

The results of Proposition 3 and 4 are illustrated in Figure 3. To see that

the A R as well as the maximal and minimal ARM may not converge to a dual

optimal solution, let the buffer contents of processors 1 and 2 be both

equal to (-1,1) and let both processors update the respective price co-

ordinates and then exchange the results of the computation. Then the buffer

contents will be (1,-l), and by repeating this process one more time the

buffer contents will become again (-1,1) thereby completing a cycle. There-

fore in general we cannot expect convergence of the ARM to the optimal

solution set if the latter contains more than one element. Similarly

the maximal and minimal ARM need not converge to p and p respectively

2 if the initial buffer contents do not belong to the appropriate regions

[cf. (36)].

Sd.



P2 Set of Initial
I buffer contents

for which the
maximal ARM
converges to n

Set to which the Reduced Dual- .convergC/
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Sett of

buffer contents Minimal
for which the Solution p
minimal ARM
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i .4

Figure 3: Structure of the optimal solution set, and convergenceL regions of the ARM, the maximal ARM, and the minimal ARM.
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